Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
Children (Basel) ; 10(4)2023 Apr 03.
Article in English | MEDLINE | ID: covidwho-2299360

ABSTRACT

The diagnosis of Kawasaki disease (KD) is challenging and often delayed mainly in case of young infants and in presence of an incomplete disease and atypical features. Facial nerve palsy is one of the rare neurologic symptoms of KD, associated with a higher incidence of coronary arteries lesions and may be an indicator of a more severe disease. Here, we describe a case of lower motor neuron facial nerve palsy complicating KD and perform an extensive literature review to better characterize clinical features and treatment of patients with KD-associated facial nerve palsy. The patient was diagnosed at the sixth day of disease and presented extensive coronary artery lesions. A prompt treatment with intravenous immunoglobulins, aspirin and steroids obtained a good clinical and laboratory response, with resolution of facial nerve palsy and improvement of coronary lesions. The incidence of facial nerve palsy is 0.9-1.3%; it is often unilateral, transient, more frequent on the left and seemingly associated with coronary impairment. Our literature review showed coronary artery involvement in the majority of reported cases (27/35, 77%) of KD with facial nerve palsy. Unexplained facial nerve palsy in young children with a prolonged febrile illness should prompt consideration of echocardiography to exclude KD and start the appropriate treatment.

3.
Minerva Endocrinol (Torino) ; 47(3): 270-278, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2146119

ABSTRACT

BACKGROUND: Despite severe acute respiratory syndrome (SARS)-Coronavirus (CoV-2) primarily targeting the lungs, the heart represents another critical virus target. Thus, the identification of SARS-CoV-2 disease of 2019 (COVID-19)-associated biomarkers would be beneficial to stratify prognosis and the risk of developing cardiac complications. Aldosterone and galectin-3 promote fibrosis and inflammation and are considered a prognostic biomarker of lung and adverse cardiac remodeling. Here, we tested whether galectin-3 and aldosterone levels can predict adverse cardiac outcomes in COVID-19 patients. METHODS: To this aim, we assessed galectin-3 and aldosterone serum levels in 51 patients diagnosed with COVID-19, using a population of 19 healthy subjects as controls. In in-vitro studies, we employed 3T3 fibroblasts to assess the potential roles of aldosterone and galectin-3 in fibroblast activation. RESULTS: Serum galectin-3 levels were more elevated in COVID-19 patients than healthy controls and correlated with COVID-19 severity classification and cardiac troponin-I (cTnI) serum levels. Furthermore, we observed an augmented secretion of aldosterone in COVID-19 patients. This adrenal hormone is a direct stimulator of galectin-3 secretion; therefore, we surmised that this axis could perpetrate fibrosis and adverse remodeling in these subjects. Thus, we stimulated fibroblasts with 10% of serum from COVID-19 patients. This challenge markedly rose the expression of smooth muscle alpha (α)-2 actin (ACTA2), a myofibroblast marker. CONCLUSIONS: Our study suggests that COVID-19 can affect cardiac structure and function by triggering aldosterone and galectin-3 release that may serve as prognostic and therapeutic biomarkers while monitoring the course of cardiac complications in patients suffering from COVID-19.


Subject(s)
COVID-19 , Galectin 3 , Actins , Aldosterone , Biomarkers , COVID-19/complications , Fibrosis , Humans , SARS-CoV-2 , Troponin I
4.
Front Immunol ; 13: 985433, 2022.
Article in English | MEDLINE | ID: covidwho-2080149

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a rare, severe complication of COVID-19. A better knowledge of immunological, cellular, and genetic characteristics of MIS-C could help better understand the pathogenesis of the disease and contribute to identifying specific diagnostic biomarkers and develop targeted therapies. We studied 37 MIS-C children at hospital admission and 24 healthy controls analyzing serum cytokines (IFN-α, IFN-ß, IFN-γ, IL-6, IL-10, IL-17A, IL-12p70 and TNF), lymphocyte populations by flow cytometry and 386 genes related to autoimmune diseases, autoinflammation and primary immunodeficiencies by NGS. MIS-C patients showed a significant increase of serum IFNγ (despite a significant reduction of activated Th1) and ILs, even if with a great heterogeneity among patients, revealing different pathways involved in MIS-C pathogenesis and suggesting that serum cytokines at admission may help to select the inflammatory pathways to target in each patient. Flow cytometry demonstrated a relevant reduction of T populations while the percentage of B cell was increased in agreement with an autoimmune pathogenesis of MIS-C. Genetic analysis identified variants in 34 genes and 83.3% of patients had at least one gene variant. Among these, 9 were mutated in more patients. Most genes are related to autoimmune diseases like ATM, NCF1, MCM4, FCN3, and DOCK8 or to autoinflammatory diseases associated to the release of IFNγ like PRF1, NOD2, and MEF. Thus, an incomplete clearance of the Sars-CoV2 during the acute phase may induce tissue damage and self-antigen exposure and genetic variants can predispose to hyper-reactive immune dysregulation events of MIS-C-syndrome. Type II IFN activation and cytokine responses (mainly IL-6 and IL-10) may cause a cytokine storm in some patients with a more severe acute phase of the disease, lymphopenia and multisystemic organ involvement. The timely identification of such patients with an immunocytometric panel might be critical for targeted therapeutic management.


Subject(s)
Autoimmune Diseases , COVID-19 , Immunologic Deficiency Syndromes , Child , Humans , Interleukin-10 , SARS-CoV-2 , Interleukin-17 , Interleukin-6 , RNA, Viral , Cytokines/metabolism , Biomarkers , Autoantigens , Guanine Nucleotide Exchange Factors
5.
Transl Med Commun ; 7(1): 22, 2022.
Article in English | MEDLINE | ID: covidwho-2009492

ABSTRACT

Background: The pathogenesis of the novel described multisystem inflammatory syndrome in children (MIS-C) and Kawasaki disease (KD) is still debated as it is not clear if they are the same or different nosological entities. However, for both the diseases a rapid and unequivocal diagnosis is mandatory to start the therapy before the onset of severe complications. In this study, we aimed to evaluate the white cell populations in MIS-C and KD as potential markers to discriminate between the two diseases. Methods: We studied white cell populations by flow cytometry in 46 MIS-C and 28 KD patients in comparison to 70 age-matched healthy children. Results: MIS-C patients had a significant lymphopenia that involved both B and T populations while KD patients showed a significant neutrophilia and thrombocythemia. Granulocyte/lymphocyte ratio helped to diagnose both MIS-C and KD with a high diagnostic sensitivity, while a multivariate analysis of granulocyte and T lymphocyte number contributed to discriminate between the two diseases. Conclusions: The relevant lymphopenia observed in MIS-C patients suggests that the disease would be a post-infectious sequel of COVID-19 immunologically amplified by a massive cytokine release, while the significant neutrophilia and thrombocythemia observed in KD confirmed that the disorder has the genesis of a systemic vasculitis. The analysis of a panel of circulating cells may help to early diagnose and to discriminate between the two diseases. Supplementary Information: The online version contains supplementary material available at 10.1186/s41231-022-00128-2.

6.
Metabolites ; 12(8)2022 Jul 24.
Article in English | MEDLINE | ID: covidwho-1957391

ABSTRACT

Endothelial hyperinflammation and vasculitis are known hallmarks of acute COVID-19 and multisystem inflammatory syndrome in children (MIS-C). They are due to the direct effect of the virus on endothelial cells enhanced by pro-inflammatory modulators and may cause venous/arterial thrombosis. Therefore, it is essential to identify patients with endothelial damage early in order to establish specific therapies. We studied the monocyte chemoattractant protein 1 (MCP-1), the perinuclear anti-neutrophil cytoplasmic antibodies (pANCA), and the vascular endothelial growth factor A (VEGF-A) in serum from 45 MIS-C patients at hospital admission and 24 healthy controls (HC). For 13/45 MIS-C patients, we measured the three serum biomarkers also after one week from hospitalization. At admission, MIS-C patients had significantly higher levels of MCP-1 and VEGF-A than the HC, but no significant differences were observed for pANCA. While after one week, MCP-1 was significantly lower, pANCA was higher and VEGF-A levels were not significantly different from the admission values. These findings suggest an involvement of epithelium in MIS-C with an acute phase, showing high MCP-1 and VEGF-A, followed by an increase in pANCA that suggests a vasculitis development. The serum biomarker levels may help to drive personalized therapies in these phases with anticoagulant prophylaxis, immunomodulators, and/or anti-angiogenic drugs.

7.
J Clin Med ; 11(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957365

ABSTRACT

We previously observed an increase of serum interleukins (IL) and a reduction of most lymphocyte subpopulations in hospitalized COVID-19 patients. Herein, we aimed to evaluate the changes in serum IL-6, IL-10, and IL-17A levels and cytometric lymphocyte profiles in 144 COVID-19 patients at admission and after one week, also in relation to steroid treatment before hospitalization. After one week of hospitalization, we found that: (i) total lymphocytes were increased in all patients; (ii) neutrophils and IL-6 were reduced in mild/moderate patients; (iii) B lymphocytes were increased in severe patients; (iv) T lymphocyte populations increased in mild/moderate patients. In the eight patients that died during hospitalization, total leukocytes increased while T, T helper, T cytotoxic, T regulatory, and NK lymphocytes showed a reducing trend in five of the eight patients. Even if seven days are too few to evaluate the adaptive immunity of patients, we found that the steroid therapy was associated with a reduced COVID-19 inflammation and cytokine activation only in patients with severe disease, while in patients with less severe disease, the steroid therapy seems to have immunosuppressive effects on lymphocyte populations, and this could hamper the antiviral response. A better knowledge of cytokine and lymphocyte alterations in each COVID-19 patient could be useful to plan better treatment with steroids or cytokine targeting.

8.
Viruses ; 14(3)2022 03 05.
Article in English | MEDLINE | ID: covidwho-1732241

ABSTRACT

Profound clinical differences between the first and second waves of COVID-19 were observed in Europe. Nitric oxide (NO) may positively impact patients with Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) infection. It is mainly generated by inducible nitric oxide synthase (iNOS). We studied serum iNOS levels together with serum interleukin (IL)-6 and IL-10 in patients with SARS-CoV-2 infection in the first wave (n = 35) and second wave (n = 153). In the first wave, serum iNOS, IL-6, IL-10 levels increased significantly, in line with the World Health Organization (WHO) score severity, while in the second wave, iNOS did not change with the severity. The patients of the second wave showed lower levels of iNOS, IL-6, and IL-10, as compared to the corresponding subgroup of the first wave, suggesting a less severe outcome of COVID-19 in these patients. However, in the severe patients of the second wave, iNOS levels were significantly lower in patients treated with steroids or azithromycin before the hospitalization, as compared to the untreated patients. This suggests an impairment of the defense mechanism against the virus and NO-based therapies as a potential therapy in patients with low iNOS levels.


Subject(s)
COVID-19 , Humans , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II , SARS-CoV-2
9.
Sci Rep ; 12(1): 1212, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1649849

ABSTRACT

The molecular basis of the wide clinical heterogeneity of Coronavirus disease 2019 (COVID-19) is still unknown. Matrix metalloproteinases (MMPs) may have a role in the lung damage and regeneration that occur in severe patients. We studied serum MMP3 and MMP9 as potential biomarkers of COVID-19 severity, in 108 hospitalized patients with different World Health Organization (WHO) severity stage and in 48 controls. At hospital admission, serum MMP3 was increased in COVID-19 patients with a significant trend along the progression of the WHO stage, while serum levels of MMP9 were significantly increased in COVID-19 patients with no correlation with disease severity. At 1 week from hospitalization, MMP3 was reduced, suggesting an early pathogenic role of the protein in lung inflammation, while MMP9 levels were further increased, indicating a late role of the protein in the inflammatory process, specifically during the repairing phase. Furthermore, serum MMP9 was positively correlated with serum interleukin-6, myeloperoxidase, and circulating neutrophils and monocytes number. In conclusion, serum MMP3 may help to early predict the severity of COVID-19 and both proteins, MMP3 and MMP9, may contribute to define severe COVID-19 patients that may benefit from a targeted therapy on MMPs.


Subject(s)
COVID-19/blood , Matrix Metalloproteinase 3/blood , Matrix Metalloproteinase 9/blood , Patient Acuity , SARS-CoV-2/metabolism , Adult , Aged , Biomarkers/blood , Female , Humans , Male , Middle Aged
10.
J Transl Med ; 19(1): 403, 2021 09 23.
Article in English | MEDLINE | ID: covidwho-1438276

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) pandemic had a 1st wave in Europe from March to May 2020 and a 2nd wave since September 2020. We previously studied 35 hospitalized COVID-19 patients of the 1st wave demonstrating a cytokine storm and the exhaustion of most lymphocyte subpopulations. Herein, we describe the results obtained from COVID-19 patients of the 2nd wave. METHODS: We analyzed interleukin (IL)-6 by human-specific enzyme-linked immunosorbent assay and a large set of lymphocyte subpopulations by flow cytometry in 274 COVID-19 patients hospitalized from September 2020 to May 2021. RESULTS: Patients of 2nd wave compared with those of 1st wave showed lower serum IL-6 levels and a higher number of B and most T lymphocyte subpopulations in advanced stages, in relation with the age and the gender. On the other hand, we observed in 2nd wave patients: (i) a reduction of most lymphocyte subpopulations at mild and moderate stages; (ii) a reduction of natural killer cells and T regulatory cells together with a higher number of activated T helper (TH) 17 lymphocytes in all stages, which were mainly related to steroid and azithromycin therapies before hospitalization. CONCLUSIONS: COVID-19 had a less severe impact in patients of the 2nd wave in advanced stages, while the impact appeared more severe in patients of mild and moderate stages, as compared with 1st wave patients. This finding suggests that in COVID-19 patients with milder expression at diagnosis, steroid and azithromycin therapies appear to worsen the immune response against the virus. Furthermore, the cytometric profile may help to drive targeted therapies by monoclonal antibodies to modulate specific IL/lymphocyte inhibition or activation in COVID-19 patients.


Subject(s)
COVID-19 , Humans , Killer Cells, Natural , Lymphocyte Count , Pandemics , SARS-CoV-2
11.
Biomolecules ; 11(9)2021 09 16.
Article in English | MEDLINE | ID: covidwho-1408458

ABSTRACT

Systemic vascular damage with micro/macro-thrombosis is a typical feature of severe COVID-19. However, the pathogenesis of this damage and its predictive biomarkers remain poorly defined. For this reason, in this study, serum monocyte chemotactic protein (MCP)-2 and P- and E-selectin levels were analyzed in 204 patients with COVID-19. Serum MCP-2 and P-selectin were significantly higher in hospitalized patients compared with asymptomatic patients. Furthermore, MCP-2 increased with the WHO stage in hospitalized patients. After 1 week of hospitalization, MCP-2 levels were significantly reduced, while P-selectin increased in patients in WHO stage 3 and decreased in patients in WHO stages 5-7. Serum E-selectin was not significantly different between asymptomatic and hospitalized patients. The lower MCP-2 levels after 1 week suggest that endothelial damage triggered by monocytes occurs early in COVID-19 disease progression. MCP-2 may also predict COVID-19 severity. The increase in P-selectin levels, which further increased in mild patients and reduced in severe patients after 1 week of hospitalization, suggests that the inactive form of the protein produced by the cleavage of the active protein from the platelet membrane is present. This may be used to identify a subset of patients that would benefit from targeted therapies. The unchanged levels of E-selectin in these patients suggest that endothelial damage is less relevant.


Subject(s)
COVID-19 , Chemokine CCL8/blood , E-Selectin/blood , Endothelium, Vascular , P-Selectin/blood , SARS-CoV-2/metabolism , Adult , Aged , COVID-19/blood , COVID-19/pathology , Endothelium, Vascular/injuries , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Humans , Male , Middle Aged , Monocytes/metabolism , Monocytes/pathology
12.
Int J Mol Sci ; 22(17)2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1390657

ABSTRACT

COVID-19 is a global threat that has spread since the end of 2019, causing severe clinical sequelae and deaths, in the context of a world pandemic. The infection of the highly pathogenetic and infectious SARS-CoV-2 coronavirus has been proven to exert systemic effects impacting the metabolism. Yet, the metabolic pathways involved in the pathophysiology and progression of COVID-19 are still unclear. Here, we present the results of a mass spectrometry-based targeted metabolomic analysis on a cohort of 52 hospitalized COVID-19 patients, classified according to disease severity as mild, moderate, and severe. Our analysis defines a clear signature of COVID-19 that includes increased serum levels of lactic acid in all the forms of the disease. Pathway analysis revealed dysregulation of energy production and amino acid metabolism. Globally, the variations found in the serum metabolome of COVID-19 patients may reflect a more complex systemic perturbation induced by SARS-CoV-2, possibly affecting carbon and nitrogen liver metabolism.


Subject(s)
Biomarkers/blood , Carbon/metabolism , Liver/metabolism , Metabolome , Nitrogen/metabolism , Amino Acids/metabolism , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Cytokines/blood , Discriminant Analysis , Humans , Least-Squares Analysis , Metabolic Networks and Pathways/genetics , Metabolomics/methods , SARS-CoV-2/isolation & purification , Severity of Illness Index
13.
Viruses ; 13(9)2021 08 29.
Article in English | MEDLINE | ID: covidwho-1374540

ABSTRACT

A relationship is emerging between SARS-CoV-2 infections and ANCA-associated vasculitis (AAV) because: (i) the pulmonary involvement of COVID-19 may mimic that observed in patients with AAV; (ii) the two diseases may occur together; (iii) COVID-19 may trigger AAV. However, few cases of AAV have been identified so far in COVID-19 patients. To define the frequency of ANCA autoimmunity in patients with SARS-CoV-2 infection, we analyzed the serum ANCAs and the serum PR3 and MPO antigens by immunoassays in 124 adult patients with a diagnosis of SARS-CoV-2 infection (16 were asymptomatic and 108 were hospitalized) and 48 control subjects. The serum ANCAs were significantly higher in the hospitalized patients compared with either the controls or the asymptomatic patients and increased with the progression of the COVID-19 severity. After one week of hospitalization, the values were significantly lower. In contrast, no differences emerged among the controls, asymptomatic and hospitalized patients for the PR3 and MPO serum levels. None of the patients had clinical signs of AAV with the exception of a severe pulmonary involvement. Further studies are necessary to define whether the increase in the serum ANCAs might mask subclinical vasculitis in a percentage of patients with SARS-CoV-2 infection or it is an epiphenomenon of SARS-CoV-2 infection with no clinical manifestations.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic/blood , COVID-19/blood , COVID-19/virology , SARS-CoV-2 , Adult , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/blood , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/etiology , COVID-19/diagnosis , COVID-19/immunology , Disease Susceptibility , Female , Humans , Immunoassay , Male , Middle Aged , Pilot Projects , Symptom Assessment
14.
Front Oncol ; 11: 705948, 2021.
Article in English | MEDLINE | ID: covidwho-1346413

ABSTRACT

BACKGROUND: We report the case of a woman with non-Hodgkin lymphoma who remained positive on the molecular assay for SARS-CoV-2 for six months: she has never experienced a severe form of COVID-19 although in absence of seroconversion. METHODS: The whole SARS-CoV-2 genome analysis was performed by the CleanPlex SARS-CoV-2 Research and Surveillance NGS Panel (PARAGON GENOMICS, Hayward, USA). RESULTS: We found twenty-two mutations in SARS-CoV-2 genome and a novel deleterious ORF3a frameshift c.766_769del corresponding to a unique and novel lineage. The region affected by this frameshift variant is reported as being important in determining SARS-CoV-2 immunogenicity. Patient's immunophenotype showed the absence of B lymphocytes and significantly reduced T-cell count. Only after the treatment with hyperimmune plasma she finally became negative on the swab. CONCLUSIONS: Our findings could be helpful in the management of patients with immunodeficiency, particularly when novel variants, potentially altering the virus immune response, are present.

15.
Front Public Health ; 9: 664108, 2021.
Article in English | MEDLINE | ID: covidwho-1295722

ABSTRACT

COVID-19 may appear with a widely heterogeneous clinical expression. Thus, predictive markers of the outcome/progression are of paramount relevance. The neutrophil/lymphocyte ratio (NLR) has been suggested as a good predictive marker of disease severity and mortality. Accordingly, we found that NLR significantly increased in parallel with the WHO severity stage in COVID-19 patients during the Ist wave (March-May 2020; n = 49), due to the significant reduction of lymphocyte and the significant increase of neutrophil in severe COVID-19 patients. While, we did not observe significant differences of NLR between the WHO severity stage among COVID-19 patients of the IInd wave (September 2020-April 2021; n = 242). In these patients, the number of lymphocytes and neutrophils did not change significantly between patients of different severity subgroups. This difference likely depends on the steroids therapy that the patients of the IInd wave performed before hospitalization while most patients of the Ist wave were hospitalized soon after diagnosis. This is also confirmed by serum interleukin (IL)-6 and myeloperoxidase (MPO) that gradually increased with the disease stage in patients of the Ist wave, while such biomarkers (whose production is inhibited by steroids) did not show differences among patients of the IInd wave in different stages. Thus, the NLR could be tested at diagnosis in naïve patients before starting therapies.


Subject(s)
COVID-19 , Neutrophils , Humans , Lymphocyte Count , Lymphocytes , Prognosis , Retrospective Studies , SARS-CoV-2
16.
Biomedicines ; 9(6)2021 May 27.
Article in English | MEDLINE | ID: covidwho-1256425

ABSTRACT

Since the beginning of 2020, the new pandemic caused by SARS-CoV-2 and named coronavirus disease 19 (COVID 19) has changed our socio-economic life. In just a few months, SARS-CoV-2 was able to spread worldwide at an unprecedented speed, causing hundreds of thousands of deaths, especially among the weakest part of the population. Indeed, especially at the beginning of this pandemic, many reports highlighted how people, suffering from other pathologies, such as hypertension, cardiovascular diseases, and diabetes, are more at risk of severe outcomes if infected. Although this pandemic has put the entire academic world to the test, it has also been a year of intense research and many important contributions have advanced our understanding of SARS-CoV-2 origin, its molecular structure and its mechanism of infection. Unfortunately, despite this great effort, we are still a long way from fully understanding how SARS-CoV-2 dysregulates organismal physiology and whether the current vaccines will be able to protect us from possible future pandemics. Here, we discuss the knowledge we have gained during this year and which questions future research should address.

17.
Sci Rep ; 11(1): 2941, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1062774

ABSTRACT

In recent months, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world. COVID-19 patients show mild, moderate or severe symptoms with the latter ones requiring access to specialized intensive care. SARS-CoV-2 infections, pathogenesis and progression have not been clearly elucidated yet, thus forcing the development of many complementary approaches to identify candidate cellular pathways involved in disease progression. Host lipids play a critical role in the virus life, being the double-membrane vesicles a key factor in coronavirus replication. Moreover, lipid biogenesis pathways affect receptor-mediated virus entry at the endosomal cell surface and modulate virus propagation. In this study, targeted lipidomic analysis coupled with proinflammatory cytokines and alarmins measurement were carried out in serum of COVID-19 patients characterized by different severity degree. Serum IL-26, a cytokine involved in IL-17 pathway, TSLP and adiponectin were measured and correlated to lipid COVID-19 patient profiles. These results could be important for the classification of the COVID-19 disease and the identification of therapeutic targets.


Subject(s)
COVID-19/pathology , Lipid Metabolism/physiology , Alarmins/blood , COVID-19/virology , Cytokines/blood , Discriminant Analysis , Female , Humans , Least-Squares Analysis , Lipids/blood , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index
18.
Life Sci ; 261: 118355, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-733713

ABSTRACT

AIMS: This study aims to cast light on immunocytometric alterations in COVID-19, a potentially fatal viral infection with heterogeneous clinical expression and a not completely defined pathophysiology. METHODS: We studied 35 COVID patients at hospital admission testing by cytofluorimetry a large panel of lymphocyte subpopulations and serum tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-17A and the soluble receptor of IL-17A (IL-17RA). KEY FINDINGS: At hospital admission, total lymphocytes and most T and B subpopulations were reduced in 50-80% of patients, with close relationship to disease severity. While activated T helper 1 (TH1) and TH17 cells resulted normal or higher. Serum IL-6 was increased in all patients, while TNF-α and IL-17A were higher in advanced stages. A patient subset with low severity had very high IL-17RA levels. Tocilizumab treatment caused an increase of IL-17A in 3/6 patients and a reduction in 3 others, while the lymphocyte number increased in 3 patients and did not change in the others. SIGNIFICANCE: Cytofluorimetry revealed a functional exhaustion of most lymphocyte populations in COVID patients not involving activated TH1 and TH17. Consequently, there was a relevant cytokines production that contributes to impair the respiratory inflammation. The increase of TH17 and IL-17 in a subset of cases and the evidence of a significant increase of IL-17RA (that prevents the interaction of IL-17 with the cell receptor) in patients with low severity suggest that some patients could benefit from monoclonal antibodies treatment targeting IL-17 pathway. Immunocytofluorimetric markers may contribute to a personalized therapy in COVID patients.


Subject(s)
Coronavirus Infections/immunology , Cytokines/blood , Flow Cytometry/methods , Lymphocyte Subsets/immunology , Pneumonia, Viral/immunology , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , COVID-19 , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Female , Humans , Inflammation/immunology , Inflammation/virology , Lymphocyte Count , Male , Middle Aged , Pandemics , Patient Admission , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Precision Medicine , Prospective Studies , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL